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High-resolution shot capture reveals systematic biases
and an improved method for shooter evaluation
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Evaluating shooting ability is a critical component of player comparison and player development.
However, players are often evaluated on a limited number of shots, exposing assessment to high
variation and inaccurate, anecdotal conclusions. The aim of this paper is to explore the potential of
high-resolution shot data to improve shooter evaluation. Using over 22 million shots captured in
high-resolution by Noahlytics, we reveal previously hidden systematic biases in entry left-right and
entry depth from all positions on the court. Then, we focus on the high-resolution shot data from
509 NBA, college and high school players to train a machine-learning algorithm that predicts
shooting ability from 25-shot sessions. The algorithm outperforms conventional methods and better
ranks players by skill-level. We conclude by encouraging coaches and players to re-evaluate their
largely anecdotal assessment methods and implement more effective, data-driven methods to
enhance shooter development and shooter ranking.

1. Introduction

1.1.Motivation

Six years ago, Kirk Goldsberry revolutionized shot analysis with new shot chart visualizations
that introduced a spatial component to shooting percentagel. He advocated for analysis to go
beyond summary percentages and to consider shooter ability from different positions on the court.
His research has changed the way the NBA evaluates shooters. Now, with newly-developed
technology, we can build on these findings to get greater insight into factors that influence shooting
percentage. Previously we could only expose low percentage shooting from different areas of the
court, while now we can explore why shooters miss from those positions. Moreover, rather than
assessing shooting ability on shooting percentage alone, where low sample sizes can introduce bias,
we now can capture and analyze valuable information about how players achieve their shooting
percentages.

Knowing this “why” and “how” has significant ramifications in the NBA for shooter
development and shooter ranking. First, high shooting percentages make the game more exciting
for fans, and understanding why players miss from specific areas on the court reveals actionable
changes for shooter development. Second, ranking players based on their shooting ability is a
critical component in drafting and trading NBA players. Currently, players are assessed by their
shooting percentage on a minimal number of shots2. This approach is prone to high sampling error
and inaccurate results, leading to suboptimal team rosters.

In this paper, we explore the value of high-resolution shot data to augment shooter
development and shooter ranking. This paper is built upon 22 million shots captured in high-
resolution by Noahlytics. High-resolution shot data allows the exploration of not only shot position
on the court, but also how the ball approaches and interacts with the hoop. We start by redesigning
shot charts through the lens of spatial shot patterns at the rim to expose systematic miss patterns in
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the population. Through unsupervised learning, we explore the potential of high-resolution rim
pattern data capture to augment shooter evaluation. Then, we train a spatial rim pattern-based
supervised algorithm to rank shooter ability that outperforms conventional assessment
approaches.

We foresee that this research will have long-term impact in the NBA by materially increasing
shooting percentages and reforming shooter ranking methods. As more players adopt high-
resolution data capture training methods, we predict that systematic shooting biases will be
resolved. As more coaches adopt high-resolution shooting analysis approaches, players will be
evaluated for draft or trade based upon quantitative assessment of shooting skill rather than
inaccurate, small sample size evaluation.

1.2.Data collection

This study uses over 22 million shots captured by the Noahlytics system. The Noahlytics
system utilizes a sensor that hangs about 13 feet above the basket, capturing all shots taken. The
system accurately and automatically determines the shot location, whether the shot was made or
missed, and how the shot was made or missed using high-resolution shot attributes. The data in
this paper comes from 5,649 individuals. Shooters are both male and female from all levels (NBA,
WNBA, NCAA, high-school, etc.).

1.3. High-resolution shot attributes

For each shot taken, the system collects data about how and where the basketball shot enters
the plane of the hoop. We analyze three attributes of shot entry: Left-Right, Depth and Angle. Since
shots are taken from all positions of the court, these shot entry attributes are measured from the
perspective of the shooter; the point on the hoop closest to the shooter is always defined as the
front of the hoop. These attributes have previously been described in great detail3.

In brief, Left-Right is the left to right deviation of the shot at the hoop. A shot which lands
exactly on the leftmost part of the hoop from the perspective of the shooter has a Left-Right value of
-9”, a straight shot has a Left-Right value of 0” and a shot which lands on the rightmost part of the
hoop has a Left-Right value of +9”. Depth is the entry depth of the shot into the hoop. A shot which
lands directly on the front of the hoop from the perspective of the shooter has a Depth value of 0”
and a shot which lands directly on the back of the hoop has a Depth value of 18”. Angle is the entry
angle of the shot into the hoop. A relatively flat shot can have an Angle value of 36° and a relatively
high arcing shot can have an Angle value of 55°.
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Figure 1: Visualizations of shot attributes at the plane of the hoop - A) Left-Right attribute, B) Depth attribute and C)
Angle attribute.
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2. Systematic Biases

In this section, we utilized the high-resolution shot capture data for over 22 million shots to
construct court floor maps which reveal systematic population shooting biases 45. Each square in
the heat maps represents a six-inch by six-inch square on the basketball court. The squares are
colored according to the mean value for all shots taken from that position of the specified shot
attribute, first for the Left-Right attribute and then for the Depth attribute.

2.1 Reduced shooting percentage due to Left-Right biases in corner 3-point shots

When taken as a group, all shots have an average Left-Right value of 0 inches (straight), and
excellent shooters have an average Left-Right value of 0 inches with minimal Left-Right variation
from shot to shot. Despite these summary statistics, we hypothesized that there may be systematic
Left-Right biases from specific positions on the court that are invisible to the naked eye. To assess
this hypothesis, we divided the 22 million high-resolution shots into six-inch by six-inch squares on
the court based on their shot location. For each of these squares, we calculated the mean Left-Right
value across the entire population (Figure 2A). As expected, court positions that are dominated by
bank shots vary significantly from 0 inches (straight) as shown by the dark red and blue areas
emanating at 45 degrees from the left and right sides of the hoop. Ignoring these two bank shot
dominated areas, the right side of the court has a left bias (red color) and the left side of the court
has a right bias (blue color). Thus, on the right side of the court players shoot to the left of center,
and on the left side of the court, players shoot to the right of center.
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Figure 2: Systematic Lett-Right Biases. (A) A heat map ot the mean Lett-Right values across all 22 million shots tor
each six-inch square of the court. (B-C) Distribution of the number of shots taken across different Left-Right values
colored by percentage made for (B) right corner (blue box) and (C) left corner (orange box). Center of the hoop is
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This systematic bias is particularly prominent for 3-point shots, with the largest bias
occurring for baseline 3-point shots. The baseline 3-point shot is strategically important in the NBA
because it is the shortest shot resulting in 3 points of value. On average, players shooting from the
right corner shoot 2.34 inches left of the hoop center (Figure 2B). On average, players shooting
from the left corner shoot 1.05 inches right of the hoop center (Figure 2C). An average NBA player
shoots with Left-Right standard deviation of about 4 inches from the corner 3-point distance. Using
this standard deviation, we simulated Left-Right distributions with different Left-Right averages.
Thus, we could estimate shooting percentage loss at each suboptimal Left-Right value for an
average NBA player. Given these distributions, an NBA player with average Left-Right distribution
is sacrificing up to 4% of shooting percentage from the right corner and up to 2% of shooting
percentage from the left corner. Notably, the bias in the right corner is much more extreme. While
the Noahlytics system does not currently collect data on the handedness of the shooters, we
hypothesize this difference is due to a much higher percentage of right-handed shooters.

2.2 Reduced shooting percentage due to longer shots landing shorter in the hoop
Last year, we reported that 3-point shots are most likely to score when shot at the center of
the Guaranteed Make Zone (GMZ), the region of the hoop where a shot is guaranteed to score3. We
also found a systematic population bias for 3-pointers to be shot 2 inches short of this center point.
In last year’s study, we grouped all 3-point shots together and did not consider how shot distance
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Figure 3: Systematic Depth Biases. (A) A heat map of the mean Depth values across all 22 million shots for each six-
inch square of the court. (B) Distributions of the number of shots taken across different Depth values colored by
percentage made. Charts visualize the shots taken 15-18 feet from the basket on the top and 27-30 feet from the
basket on the bottom. The mean Depth is denoted with a grey line and the center of the GMZ is denoted with a black
line.
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impacts shot Depth. This year we grouped the 22 million high-resolution shots into six-inch by six-
inch squares on the court (Figure 3A). Again, bank shots stand out in this plot. They are the blue
regions emanating at 45 degrees from the left and right sides of the hoop. Bank shots are shot on a
trajectory that would proceed past the rim if the backboard were removed, so bank shots appear to
be on a trajectory that goes well past the hoop. For this analysis, we ignore the bank shot regions
and focus on non-bank shots. Non-bank shots demonstrate a clear trend; shorter shots go deeper in
the hoop and longer shots go shorter in the hoop. This can be seen most clearly in the bottom half of
the figure where bank shots are rare. Mid-range shots average about 11 inch Depth (white) while
long 2-point shots average about 10 inch Depth (light red) and 3-point shots average about 9 inch
Depth (dark red). This trend is consistent in every direction and holds for median-based statistics.

To assess the relationship between shot distance, Depth and make percentage, we plotted the
distribution of shots taken at several different shot distance ranges, coloring each bar with the
make percentage in the population (Figure 3B). To enable cleaner analysis, we only considered
non-bank shots that went straight (-2 < Left-Right > 2). The dark green color in each chart
represents the region of the hoop with the highest percentage of shots scored, also known as the
GMZ. Notably, the mean Depth value decreases as shots get longer, from 10.1 inches at 15-18 feet to
7.8 inches at 27-30 feet (denoted with the grey line). On the other hand, the center of the GMZ
region remains more constant, only shifting from 11.5 inches at 15-18 feet to 10.5 inches at 27-30
feet (denoted with a black line). Thus, players consistently shoot shorter, on average, than the
center of the GMZ. We used an NBA player with standard Depth variation to estimate the
percentage loss due to these biases. Depth distributions are consistently skewed short (non-
normal), so we estimated the percentage loss by varying the median Depth of the empirical Depth
distribution of the player. Simulations showed about a 1.5% decrease in shooting percentage for
the typical NBA 3-point shot of 24-27 feet as compared to the optimal Depth. Since NBA teams are
increasingly shooting the 27-30 foot 3-point shot to open up the lane interior, it is worth noting that
the long 3-point shot has an even more dramatic 2.9% decrease in shooting percentage. These
shooting percentage decreases can be recovered by simply training to shoot at the center of the
GMZ.

These case studies of shot attributes across the population demonstrate the value of high-
resolution data capture to gaining important insights that were previously unnoticed. They also
demonstrate the importance of ensuring players are shooting shots in the ideal ranges of these shot
attributes in order to maximize shooting percentage.

3. Ranking players by shooting ability

Ranking shooters by skill-level is essential to comparing players and assessing player
improvement. In this section, we focus on shots of length 18-22 feet in order to expound the
limitations of conventional shooting ability assessment. We recommend a superior method based
on the high-resolution shot data described in Section 2.

3.1 Limitations of shooting percentage

Typically, a quantitative assessment of a player’s shooting ability is based on a shooting
percentage from a limited number of shots. Unfortunately, low sample sizes can lead to wide
distributions of observed shooting percentages across multiple sessions. When shooting ability is
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derived from a single shooting session, it is often an inaccurate representation of the shooter’s true
ability.

In order to visualize and quantify the variation of shooting percentages at different sample
sizes, we looked at three actual players - referred to here as Player A, Player B and Player C. We
tracked these players over 10 months. Players A, B and C took 27,636, 25,031 and 10,524 18-22
foot shots, respectively, over this time period. The players averaged 50%, 58% and 75% made
shots, respectively. Given the large number of shots, we can confidently discern that Player C is the
best shooter, followed by Player B and eventually by Player A. However, some days Player C might
produce a lower shooting percentage than Player A by chance. To visualize the variation and
likelihoods of possible shooting percentages for each player, we broke all of each player’s shots into
shooting sessions of different sizes based on time stamps from the shots. Due to a strong
correlation between player movement and shooting percentage, we only considered sessions with
low player movement for all analyses in Section 3. (See appendix for details.) On a day when a
player took 600 shots, we would extract 24 25-shot sessions, 6 100-shot sessions and 1 500-shot
session. The likelihood of a player to shoot a particular shooting percentage is denoted by the
height of the distribution (Figure 4A). When only 25-shot sessions are considered, the overlap
between shooters is very high, meaning it is very challenging to confidently rank players based on
shooting percentage from 25-shot sessions. As sessions of higher shot counts are considered, the
distributions start to separate, but there is still high overlap. Sessions of over 1,000 shots are
necessary to rank shooters reliably.
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Figure 4: Limitations of shooter ability assessment by raw shooting percentage. (A) Distributions of raw shooting
percentage densities of three real players. Sessions of different sizes are visualized: 25, 100, 500 from top to bottom.
(B) Nine shooter dimensions from 25-shot sessions visualized using t-SNE dimension reduction technique. Sessions
are colored according to player.

In addition to measuring raw shooting percentage for a session, high-resolution spatial rim
patterns are also captured for each session. This data allowed us to identify systematic shot
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characteristics based on location, as shown in Section 2. Here, we employ those same tools to
understand player ranking based on a small sample size. The spatial rim pattern is defined as the
following nine features: the mean for each shot attribute (Left-Right, Depth and Angle), the
standard deviation for each shot attribute and spearman correlation between each pair of shot
attributes. These nine features are calculated for each session. While raw shooting percentage for a
session only gives one dimension of measurement to evaluate a shooter’s skill, these rim pattern
statistics give an additional nine dimensions of measurement for each session. T-distributed
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of shots than by using the single
dimension of raw shooting percentage alone. We chose to use Gradient Boosting Regression to
allow for the optimization of arbitrary differentiable loss functions. We built a data set by extracting
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25-shot sessions from players with more than 1,000 stationary shots in the 18-22 foot range. The
labels were the overall shooting percentage for all of a player’s stationary shots in the distance
range. The data was split into a training set (with 2/3 of the players) and test set (with 1/3 of the
players). It was also down-sampled to achieve an even distribution across all observed shooting
percentages. All results are reflective of the performance of the model on the test set.

3.3 Ten-dimension prediction model improves player ranking

The quality of the high-resolution model, which includes raw shooting percentage data
augmented with nine additional spatial rim pattern dimensions, was tested in comparison to raw
shooting percentage data alone. Both metrics were compared to the gold standard of shooting
percentage evaluation - the cumulative percentage from each of the player’s thousands of shots.
First, we calculated a mean squared error. The model has half the mean squared error of raw
shooting percentage, suggesting very strong performance (Figure 5A). We also performed a
Spearman rank test on the results, revealing an increased correlation between overall shooting
ability and the ten-dimension prediction model shooting percentage as opposed to raw shooting
percentage alone (Figure 5B). There is currently a bias in the estimator due to the limited range of
training percentages that inflates the predicted shooting percentages of poor players and deflates
the predicted shooting percentages of great players. (See appendix for details.) This bias inflates the
loss in mean squared error, but it does not impact the Spearman rank test. Even with this bias,
shooters can still be ranked on ability from small shot sessions better than ever before using the
ten-dimension prediction model. There are methods to correct this bias that will allow even better
separation of player shooting ability from small shot sessions, but these methods will not be
developed further in this paper. The difference between ranking players based on raw shooting
percentage from small shot sessions compared to the ten-dimension model is visualized for Players
A, B and C (Figure 5C-D). In the ten-dimension model, Player A is more frequently predicted to be a
poor shooter and Player C is more frequently predicted to be a better shooter despite the variability
of their performance on any given day.

4. Discussion

Conventional shot charts inform a player about their shooting percentage but lack any
information about why the player attains that specific shooting percentage. We describe spatial rim
pattern shot charts to give players information that is both informative and actionable. This
information will provide players with the resources they need to develop and improve as shooters.
Although we looked at trends across the entire population, each individual player has their own
personal spatial biases. In the future, we foresee the development of spatial rim pattern court maps
for individual players. These court maps will allow coaches to describe weaknesses to players and
give them actionable advice for shooting percentage improvement. Furthermore, comparison with
a database of millions of shots will give players improvement incentives by accurately measuring
their potential shooting percentage increase with each spatial improvement. These spatial rim
pattern shot charts will change the way coaches and players approach shooter development.

Conventional shooter evaluation approaches rely on raw shooting percentages derived from a
minimal number of shots, resulting in inaccurate rankings. We demonstrated that the approach
using high-resolution shot data to construct a ten-dimension prediction model better ranks
shooters according to their ability. As data is collected over several years, we foresee the model
learning to predict potential future shooter ability in addition to current shooter ability. This
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capability will have huge impacts on player drafting, player trades and player development in the
NBA. The ability to capture high-resolution spatial shot rim patterns has opened these ideas to
reality. The only barriers standing in the way of additional progress are the accumulation of more
high-resolution rim pattern data and the application of machine learning techniques.

5. Conclusion

We argue that current approaches to shooter assessment are inadequate because they are
prone to low sample size variation and neglect shooter spatial rim patterns. In this paper, we
explored 22 million shots captured with high-resolution Noahlytics technology. First, we
established the power of high-resolution shot capture technology to expose systematic shooting
biases that impact shooting percentage. Second, we developed and recommended a shooter
evaluation approach that integrates spatial rim patterns with raw shooting percentage into a ten-
dimension prediction model. In the end, we concluded that high-resolution shot capture has the
potential to improve shooter development and shooter ranking in the NBA.
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Appendix

Section 1

As mentioned in Section 3.2, there
is a striking correlation between shooter
movement during a session and shooting
percentage. In order to assess the
relationship between shooter movement
and shooting percentage, we looked
across all players with over 1,000 shots in
the 18-22 foot range. For each day a
player shot more than 25 shots, we split
their shots into 25-shot sessions by the
shot time stamps. For example, if 25 shots
were taken, only one session was
extracted. If 50 shots were taken, two
sessions were extracted, and so on. Then,
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Appendix Figure 1: A histogram of Spearman rho correlations
for player movement between shots and shooting percentage in
a session for all players.

we defined movement as the average (mean) distance between consecutive shots in each session
and calculated this value for each player. For each player, we calculated the Spearman correlation
between movement and shooting percentage across all of their sessions (Appendix Figure 1). The
vast majority of players have a significant negative correlation between these two variables. Thus,
we excluded all sessions with an average movement of greater than two feet in order to isolate a
single shot type and increase the prediction power.

Section 2

As mentioned in Section 3.3, the prediction range of the ten-dimension prediction model is
limited by the input data. Due to the level of players tested, the training data only has players with
overall shooting percentages between 30% and 90%; thus, the ten-dimension prediction model will
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Appendix Figure 2: Prediction algorithm results. (A) Scatter plot of raw shooting

2). percentage with overall shooting percentage. (B) Scatter plot of ten-dimension
predicted shooting percentage with overall shooting ability.
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